| #              | In this chapter, we will basically dealing with Cause of motion > Force                               |
|----------------|-------------------------------------------------------------------------------------------------------|
| Plane          | with Cause of motion > Force                                                                          |
|                | 1→ Delta (sign)                                                                                       |
| Thirm.         | FORCE                                                                                                 |
|                |                                                                                                       |
| 0              | It is defined as push or pull culichteries to change or changes the state of rest or motion. Of body. |
|                | tries to change or changes the state of                                                               |
|                | Frest Or motion of body.                                                                              |
|                |                                                                                                       |
| #=             | Effects of force:-                                                                                    |
|                | The force acting on a body, can do 3 things:                                                          |
| (2)            | A fogge of a cot of forms                                                                             |
| LABR           | speed of body                                                                                         |
| 4 多流           | > direction                                                                                           |
| (ii)           | A force or a set of forces can change speed of body.  Tt can change distrot motion.                   |
|                | TWCIOI).                                                                                              |
| (11)           | It can change shape of body.                                                                          |
|                |                                                                                                       |
| (All The       | Types of Forces.                                                                                      |
|                | Forces)                                                                                               |
| CITAL STATE OF |                                                                                                       |
| *              |                                                                                                       |
|                | red Forces Junbalanced Forces                                                                         |
|                | vier Cause no change in ruse sorces are not equal                                                     |
|                | SON . It always cause the                                                                             |
| 8.8-           | Q n wotton.                                                                                           |
| 8 1            | Es Rope not move 809- 600 nouville care                                                               |
| 25             | Rope not move ) " Non push care                                                                       |







| 8.    | Define one Newton?                                                                               |
|-------|--------------------------------------------------------------------------------------------------|
|       |                                                                                                  |
|       | F=ma $(m=1; a=1)$                                                                                |
|       | au of 1m1s2.                                                                                     |
|       | THPUSC D                                                                                         |
| u     | The product of the magnitude of a folice applied on a body and the time for which it is applied. |
| Mad 1 | Mathematically. [I-Fst]                                                                          |
|       | SI unit :- (N-s)                                                                                 |
| · 2   | og-                                                                                              |
|       | catching the ball by a cricketer.                                                                |
| (1)   | Jumping on a leap of send,                                                                       |
| (:)   | Newton's third law -                                                                             |
| 0     | To Every action there is an equal and opposite obaction.                                         |
| 0     | Action- reaction pair does not react on                                                          |
| 209-  | Sacra Bray.                                                                                      |
| (0)   | hands rand teleto to more in closurated diso of creases                                          |
|       |                                                                                                  |



Initial momentum of object A - m, v, Rate of change of . Rate of change of momentum in B. momentum in A F=m, v, - m, u, F = m2 N2 - m2 U2 F = m, (v,-v,) · We know that Irohn (11) law of matien  $m_1(v_1-v_1) = -(m_2(v_2-v_2))$  $m_1 V_1 - m_1 V_1 = -m_2 V_2 + m_2 V_2$ m, V, +m, V2 = m, N, + m, 12 · Final momentum - Fritial momentum

Example 3. A car having mass of 1000 kg is moving with a velocity of 0.5 m/s. What will be its momentum?

**Solution**: Given, Velocity of the car (v) = 0.5 m/s

Mass of the car (m) = 1000 kg

Momentum (p) = ?

We know that, Momentum  $(p) = \text{Mass } (m) \times \text{Velocity } (v)$ 

Therefore,  $p = 1000 \text{ kg} \times 0.5 \text{ m/s} = 500 \text{ kg m/s}$ 

Thus, momentum of the car = 500 kg m/s. Ans.

Example 1. A bullet of mass 20 g is fired horizontally with a velocity of 150 m/s from a pistol of mass 2 kg. Find the recoil velocity of the pistol.

Solution: Given,

Mass 
$$(m_1)$$
 of bullet = 20 g = 0.02 kg

Mass 
$$(m_2)$$
 of pistol = 2 kg

Initially bullet is inside the gun and it is not moving.

So, Mass

Mass = 
$$m_1 + m_2 = (0.02 + 2) \text{ kg} = 2.02 \text{ kg}$$

And

$$u_1 = 0$$

So, Initial momentum = 
$$2.02 \times 0 = 0$$

...(i)

Finally let the velocity of pistol be  $v_2$  and  $v_1$  for bullet = 150

So,

Final momentum = 
$$m_1 v_1 + m_2 v_2$$

$$= 0.02 \times 150 + 2v_2$$
 ...(ii)

We know that

Initial momentum = Final momentum

So,

$$0 = \frac{0.02 \times 150}{100} + 2v_2$$
 [From equations (i) and (ii)]

=

$$3 + 2v_2 = 0$$

Or

$$2v_2 = -3$$

Or

$$v_2 = -1.5 \text{ m/s}$$

Ans.

(-)ve sign indicates that gun recoils in direction opposite to that of the bullet.

Example 2. Two hockey players viz A of mass 50 kg is moving with a velocity of 4 m/s and another one B belonging to opposite team with mass 60 kg is moving with 3 m/s, get entangled while chasing and fall down. Find the velocity with which they fall down and in which direction?

**Solution :** Given, 
$$m_A = 50 \text{ kg}, u_A = 4 \text{ m/s}$$

$$m_{\rm B} = 60 \text{ kg}, u_{\rm B} = 3 \text{ m/s}$$

Initial momentum<sub>A</sub> = 
$$m_A u_A$$

$$= 50 \times 4 = 200 \text{ kg m/s}$$

Initial momentum<sub>B</sub> = 
$$m_{\rm B}u_{\rm B}$$

$$= 60 \times 3 = 180 \text{ kg m/s}$$

So, Total initial momentum = 
$$200 + 180 = 380 \text{ kg m/s}$$
 ...(i)

Final momentum = 
$$(m_A + m_B)v = (50 + 60)v$$
  
= 110 $v$  ...(ii)

According to the law of conservation of momentum,

$$380 = 110v$$

Or 
$$v = \frac{380}{110} = 3.454 \text{ m/s}$$
 Ans.

# **QUESTIONS**

## VERY SHORT ANSWER TYPE QUESTIONS

|      | on force | be (-)ve ' | When? |  |  |
|------|----------|------------|-------|--|--|
| 1. L | an rorce | 00 ( ),0   |       |  |  |
|      |          |            |       |  |  |

- 2. What is the tendency of a body to resist its change of state called?
- 3. Inertia is also measured by.....of an object.
- 4. Higher the mass of an object, higher is its......

#### Force

- 5. Acceleration is determined by......which is also mass of the object.
- 6. Why does the load from the cage above the seats in a bus falls down when surdenly brakes are applied?
- 7. When a tree is shaken, its fruits and leaves fall down. Why?
- 8. Define Momentum of a body.
- 9. On what factors does the momentum of a body depend?
- 10. Why it is difficult to walk on a slippery road?

#### SHORT ANSWER TYPE QUESTIONS

- 1. Quantity of motion contained in a body is......
- 2. Unit of momentum is......
- 3. Define 1 Newton.
- 4. Although we know that a moving body keeps moving indefinitely until an external force is applied on it, then why does a ball stops when we slide it on ground (without stopping it)?
- 5. Why is it difficult to stop a truck suddenly than a motorbike?
- 6. When a metro suddenly stops all the passengers fell forward on its floor.
  Why do this happen?

- 7. We have a huge atmosphere above us that exerts a huge pressure on our shoulders, head and whole body. Why don't we get crushed under it?
- 8. A coin of mass 1 kg and a stone of mass 5 kg are thrown down the Eiffel Tower with an acceleration of 10 m/s<sup>2</sup>. Which one would reach the ground early and why?
- 9. Give applications of 1st law of motion i.e., inertia.
- 10. (a) Friction is measured in......
  - (b) Distinguish between balanced and unbalance forces.

#### LONG ANSWER TYPE QUESTIONS

- 1. (a) Derive first law of Newton from second law.
  - (b) Find the force required to stop a car of mass 100 kg with two passengers each of 50 kg sitting inside, if it is moving at 60 km/ hr speed and takes 5 s to stop.
- 2. Two balls A and B of masses 40 g and 50 g are moving at speeds of 40 m/s and 30 m/s respectively. If after colliding, B stars moving with a velocity of 25 m/s, what is the velocity of A?
- A girl of mass 30 kg jumps on a cart of mass 5 kg with a velocity of 10 m/s. Find the velocity with which she and cart start moving after she jumps on it.
- 4. (a) Why does a gunman get a jerk on firing a bullet?
  - (b) Calculate the momentum of a toy car of mass 200 gm moving with a speed of 5 m/s. [Hint - convert mass into kg].
  - (c) State the law of conservation of momentum.
- 5. For how long should a force of 100 N acts on a body of 20 kg so that it acquires a velocity of 100 ms? [Hint using formula f = ma. V = u + at]
- 6. (a) Find the acceleration produced by a force of 5 N acting on a mass of 10 kg.

  WWW.notesdrive.com

- (b) Which would require a greater force: (a) accelerating a 10 gm mass of 5 m/s<sup>2</sup> or (b) a 20 gm mass at 2 m/s<sup>2</sup>?

  [convert mass into kg].
- The velocity of a body of mass 10 kg increases from 4 m/s to 8 m/s when a force acts on it for 2s.
  - (a) What is the momentum before the force acts?
  - (b) What is the momentum after the force acts?
  - (c) What is the gain in momentum per second?
  - (d) What is the value of force?

$$\left[ \text{Hint} - a = \frac{v - u}{t} \text{ and } f = ma \right]$$

### **Answers to Long Answer Type Questions**

- 1. (b) -2000/3 N
- 2. 46.25 m/s
- 3. 8.57 m/s
- 4. (b) 1 kg/ms
- 5. 20 sec.
- 6. (a)  $0.5 \text{ m/s}^2$ 
  - (b) A greater force of 0.05 N is required for accelerating a 10 gm mass.
- 7. (a) 40 kg.m/s
  - (b) 80 kg.m/s
  - (e)  $20 \text{ kg.m/s}^2$
  - (d) 20 N.

# **OBJECTIVE TYPE QUESTIONS:**

| MCQ. |                                                     |                                                       |
|------|-----------------------------------------------------|-------------------------------------------------------|
| 1.   | A truck and a car are moving with equa              | al velocity, on applying braes, both will             |
|      | stop after certain distance and then:               |                                                       |
|      | (a) Truck will cover less distance before s         | topping.                                              |
|      | (b) Car will cover less distance before sto         | pping.                                                |
|      | (c) Both will cover equal distance.                 |                                                       |
|      | (d) None of the above.                              |                                                       |
| 2.   | In which of the following cases, the net            | force is not zero ?                                   |
|      | (a) An object floating in air                       |                                                       |
|      | (b) A ball freely falling from a certain hei        | ght.                                                  |
|      | (c) A cork floating on the surface of water         |                                                       |
|      | (d) All the cases.                                  |                                                       |
| 3.   | A force acts on a body of mass 3kg suc              | h that its velocity changes from 4ms <sup>-1</sup> to |
|      | 10 ms <sup>-1</sup> . The change in momentum of the | ne body is :                                          |
|      | (a) 42Kgms <sup>-1</sup> (b) 2Kgms <sup>-1</sup>    | (c) 18Kgms <sup>-1</sup> (d) 14Kgms <sup>-1</sup>     |
| 4.   | While opening a top with two fingers,               | he force applied are:                                 |
|      | (a) equal in magnitude                              | (b) Paralled to each other                            |
|      | (c) opposite in direction                           | (d) All of the above                                  |

| 5.   | The engine of a c                    | ar produces an accel    | eration of 4ms <sup>-2</sup> in a | car, if this Car pulls   |
|------|--------------------------------------|-------------------------|-----------------------------------|--------------------------|
|      | another car of sa                    | me mass, what is the a  | icceleration produce              | <b>.</b>                 |
|      | (a) 8ms <sup>-2</sup>                | (b) 2ms <sup>-2</sup>   | (c) 4ms <sup>-2</sup>             | (d) 0.5ms <sup>-2</sup>  |
| 6.   | A force 100N act                     | s in a body mass 2kg    | for 10 sec. The chan              | ge in the velocity of    |
|      | the body is.                         |                         |                                   |                          |
|      | (a) 100ms <sup>-1</sup>              | (b) 250ms <sup>-1</sup> | (c) 500ms <sup>-1</sup>           | (d) 1000ms <sup>-1</sup> |
| Asso | ertion and Reason t                  | ype questions :         | 7                                 |                          |
|      | Choose the appr                      | opriate answer :        |                                   |                          |
| (a)  | If both assertion                    | n and reason are Co     | ORRECT and reason                 | is the CORRECT           |
| (b)  | If both assertion explanation of the | and reason are CORP     | RECT but reason is. N             | OT THE CORRECT           |
| (c)  | If assertion is CO                   | ORRECT but reason is I  | NCORRECT                          |                          |
| (d)  | If assertions is I                   | NCORRECT but reason     | r is CORRECT                      |                          |
| (e)  | If both assertion                    | s and reason are INCOI  | RRECT                             |                          |
|      |                                      |                         |                                   |                          |
| 1.   |                                      | he not external force o | n the body is Zero, the           | n its accelerations is   |
|      | Zero.                                |                         |                                   |                          |
|      | Reason : Acce                        | eration does not depend | on force.                         |                          |
| A    | (a) b.                               | (b)c (c)d               | (d) d (                           | e) e                     |
|      |                                      |                         |                                   |                          |

| - 1 | Assertion        | : If two objec   | ts of different  | masses have sa    | ime momentum, the light       |
|-----|------------------|------------------|------------------|-------------------|-------------------------------|
|     | body posso       | es greater veloc | city.            |                   |                               |
|     | Reason: F        | or all bodies m  | nomentum alwa    | ys remains sam    | IC.                           |
|     | (a) b            | (b) c            | (c) d            | (d) d             | (e)e                          |
|     | Assertion        | : Newton's th    | ird law of mot   | ion is applicable | le only when bodies are       |
|     | motion.          |                  |                  |                   |                               |
|     | motion.  Reason: |                  | law applies to a | ll types of force | es eg z gravitaional, electri |

