HIGHER MATHEMATICS - 2012

http://www.mpboardonline.com

Time: 3 Hours]		Class: 12th	[M. M. : 100	
Note -	(1)	All questions are compulsory.		
	(2)	Marks have been indicated against each	ch question.	
	(3)	There are two Sections-Section A a question paper.	and Section B in the	
	(4)	In Section A question Nos. 1to 5 are of ol containing fill in the blanks, True/False and choose the correct answers.		
	(5)	Internal options are given in question B.	Nos. 6 to 21 of Section	
		Section -A (Objective Type Question	ıs)	
Q. 1.		Vrite the correct answer from the given options provided in every bjective type question:		

- (i) Partial fraction of $\frac{2}{x^2-1}$ is:
 - (a) $\frac{1}{2} \left[\frac{1}{x-1} + \frac{1}{x+1} \right]$ (b) $\frac{1}{2} \left[\frac{1}{x-1} \frac{1}{x+1} \right]$
 - (c) $\frac{1}{2} \left[\frac{1}{x+1} \frac{1}{x-1} \right]$ (d) $\left[\frac{1}{x-1} \frac{1}{x+1} \right]$
- The value of $tan^{-1}x + cot^{-1}x$ is: (ii)
 - $(a) \pi$

(b) zero

(c) $\frac{\pi}{2}$

- (d) 1
- The equation of X-axis is: (iii)
 - (a) $\frac{X}{1} = \frac{Y}{0} = \frac{Z}{0}$ (b) $\frac{X}{0} = \frac{Y}{1} = \frac{Z}{1}$
 - (c) $\frac{X}{1} = \frac{Y}{1} = \frac{Z}{1}$
- (d) None of these
- If \hat{i} , \hat{j} , \hat{k} are the unit vectors along the axis X, Y and Z respectively, then the value of $\hat{i} \times (\hat{j} \times \hat{k})$ is:
 - (a) zero

(b) 1

(c)-1

- (d) None of these
- The centre of the sphere $x^2 + y^2 + z^2 ax by cz = 0$ is.
 - (a) (a, b, c)

(b)(-a,-b,-c)

(c)
$$\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$$

- (d) $\left(-\frac{a}{2}, -\frac{b}{2}, -\frac{c}{2}\right)$
- Write True/False in the following state/ments: Q.2.

1 × 5

ttp://www.mpboardonline.com

- (i) The value of \bar{a} . $(\bar{a} \times \bar{b})$ is zero
- The differential coefficient of cos 2x is sin 2x (ii)
- (iii) The value of correlation coefficient is always 2.
- (iv) If two regression coefficients are 0.8 and 0.2 respectively, then correlation coefficient is equal to zero.
- The root of the equation $x^3 2x 5 = 0$ lie in the interval (23)
- Fill in the blanks: Q. 3.

1×5°

The shortest distance between two intersecting lines is always (i) equal to

- If vectors $\vec{a} = \hat{i} \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} + \hat{k}$, then the value of (ii) ā b is
- The velocity of any particle at maximum height is equal (iii)
- The nth derivative of sin x is equal to (iv)
- (v) The equation of a plane which intercept unit length from the co-ordinate axes is
- Write the answer of each question in one word/sentence of the Q. 4. following:
 - Write the value of 0.2642E05 + 0.3781E05(i)
 - (ii) In trapezoidal rule

$$\int_{0}^{b} f(x)dx = \frac{h}{2} [y_{o} + 2(y_{1} + y_{2} + y_{n-1}) + y_{n}]$$

Write the value of h.

- In Newton-Raphson's method, what is the formula, after first (iii) iteration.
- In numerical methods, write the formula for Simpson's one-(iv) third rule. http://www.mpboardonline.com
- If $\vec{a} = \hat{i} \hat{j} + \hat{k}$ and $\vec{b} = -\hat{i} + \hat{j} \hat{k}$, then find the value of (v) $|\vec{a} + \vec{b}|$
- Match the columns by choosing the correct answer from B for A: 5 Q.:5. 'A'

(i)
$$\int \cot x \, dx$$

(a)
$$\frac{1}{2}\log x + c$$

nttp://www.mpboardonline.com

(b)
$$\frac{1}{2}$$
tan x+c

(iii)
$$\int \frac{1}{1+\cos 2x} \, dx$$

(c)
$$\log(\sin x) + c$$

(iv)
$$\int (1+\tan^2 x) dx$$
(v)
$$\int \csc x dx$$

(d)
$$\log(\sec x) + c$$

(v)
$$\int \csc x \, dx$$

(e)
$$\tan x + c$$

(f)
$$\log \left(\tan \frac{x}{2} \right) + c$$

(Section - B) (Very Short Answer Type Questions)

Q. 6. Resolve
$$\frac{x}{1-x^3}$$
 into partial fraction.

(Or) Resolve
$$\frac{x^2 - 5x - 1}{(x - 1)^2(x - 2)}$$
 into partial fraction.

$$\cos^{-1}\frac{4}{5} + \sin^{-1}\frac{5}{13} = \cos^{-1}\frac{33}{65}$$

(Or) If
$$tan^{-1} a + tan^{-1} b + tan^{-1} c = \pi$$
 then prove that:
 $a + b + c = abc$

Q. 8. Find the differential coefficient of
$$x^{\sin x}$$
.

(Or) If
$$x = a \sin^3 \theta$$
 and $y = a \cos^3 \theta$ then find the value of $\frac{dy}{dx}$

Q.9. If
$$y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x +\infty}}}$$
 then prove that:

$$\frac{dy}{dx} = \frac{-\sin x}{(2y-1)}$$

nttp://www.mpboardonline.com

(Or) If
$$y = (\sin^{-1} x)^2$$
, then prove that $(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = 2$

- O. 10. Find the maximum value of $\sin x + \cos x$ (using differentiation). 4
- (Or) A spherical ball of a ice melts uniformly. When the radius of the ball is 5 cm, find the rate of change of its volume with respect ot its radius.
- Q. 11. Find the coefficient of correlation from the following data: 4

(Or) Find the coefficient of correlation from the following data:

x		y
-10		5
-5	•	9
0		7
5	·	11
10		13

- Q. 12. If regression lines are 3x + 12y 19 = 0 and 9x + 3y 46 = 0, then find the coefficient of correlation.
- (Or) If the regression line of y on x is ax + by + c = 0 and the regression line of x on y is $a_1x + b_1y + c_1 = 0$, then prove that:

$$ab_1 \leq a_1b$$
.

(Short Answer Type Questions)

- Q. 13. Find the equation of the plane passes through the point (-1, 3, 2) and is perpendicular to plane x + 2y + 2z = 5 and 3x + 3y + 2z = 8.
- (Or) Find the distance from a point (-1, -5, -10) to the point of intersection of the line $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$ and the plane x-y+z=5
- Q. 14. Show that the sum of three vectors determined by the medians of a triangle, directed from the vertices is zero.
- (Or) If $\vec{a} + \vec{b} + \vec{c} = 0$, then prove that:

$$\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$$

http://www.mpboardonline.com

where $\vec{a}, \vec{b}, \vec{c}$ are non-zero vectors

Q. 15. If
$$f(x) = \begin{cases} \frac{x^2 - 1}{x + 1} & x \neq -1 \\ -2 & x = -1 \end{cases}$$
 5

so verify whether the function f(x) is continuous at x = -1

(Or) Find the value of
$$\lim_{x \to 0} \frac{\sqrt{2+x} - \sqrt{2-x}}{x}$$

Q. 16. Evaluate:
$$\int \frac{xe^x}{(x+1)^2} dx$$

(Or) Evaluate:
$$\int \frac{1}{5+4\sin x} dx$$

Q. 17. Prove that:
$$\int_0^{\pi/2} \frac{dx}{1 + \tan x} = \frac{\pi}{4}$$

(Or) Find the area of the circle $x^2 + y^2 = a^2$ by integration.

Q. 18. Solve the differential equation: 5

$$(1+x^2)dy = (1+y^2)dx$$

(Or) Find the solution of the differential equation:

$$\frac{dy}{dx} + y \tan x = \sec x.$$

and

http://www.mpboardonline.com

- Q. 19. If two cubical dice are thrown simultaneously, then find the probability of getting the sum of numbers 'more then 7' or 'less than 7'.
- (Or) The odds in favour of winning a race for three horses A,B and c respectively 1:2, 1:3 and 1:4 Find the probability for winning of any one of them

(Long Answer Type Questions)

- Q. 20. Prove that the plane passes through the points (1,0,1), (1,1,1) and (-7,-3,-5) is perpendicular to xz plane.
- (Or) Find the equation of the sphere which passes through points (0, 0, 2), (0, 2, 0) and (2, 0, 0) and whose centre lies on the plane x + y + z=2.
- Q.21. Prove by vector method: $\sin (\alpha + \beta) = \sin \alpha \cos \beta \cos \alpha \sin \beta.$
- (Or) Find the shortest distance between the given lines by vector method:

$$\vec{r} = 3\hat{i} + 8\hat{j} + 3\hat{k} + \lambda(3\hat{i} - \hat{j} + \hat{k})$$

$$\vec{r} = -3\hat{i} - 7\hat{j} + 6\hat{k} + \mu(-3\hat{i} + 2\hat{j} + 4\hat{k})$$

http://www.mpboardonline.com Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से